Diagnostic and Therapeutic Ultrasound

Ultrasound is one of the most frequently used imaging modalities in clinical routine. It is real-time, safe, transportable and offers excellent spatial resolution and tissue contrast. However, for a long period of time its clinical applications did not exploit its full potential. With the introduction of microbubbles as contrast agents, ultrasound enables a detailed and quantitative characterization of tissue microvascularisation, and recently, the first molecularly targeted microbubbles have entered clinical application. In addition, there is clear evidence that contrast-enhanced ultrasound has significant potential to improve drug delivery by using mechanical forces from oscillating microbubbles to open biological barriers. Furthermore, microbubbles can also be loaded with drugs and act as drug carriers releasing their content only at the target site after local ultrasound exposure.
Ultrasound imaging has been one of the main research topics of Professor Fabian Kiessling for over 10 years. With the new “Diagnostic and Therapeutic Ultrasound” group in ExMI, it is our intention to intensify our efforts in ultrasound research and to focus our translational research on

  • multifunctional microbubble design
  • quantitative, functional and molecular vascular characterization
  • combination of ultrasound and photoacoustic imaging
  • sonopermeabilisation and sonoporation

Univ.-Prof. Dr. med. Fabian Kiessling


Selected publications

Research Papers

  1. Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, Pich A, Storm G, van Zandvoort M, and Kiessling F. Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Advanced Functional Materials. 2014;25(1):36‑43.
  2. Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, and Gätjens J. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials. 2011;32(26):6155‑63.
  3. Palmowski M, Lederle W, Gaetjens J, Socher M, Hauff P, Bzyl J, Semmler W, Günther RW, and Kiessling F. Comparison of conventional time–intensity curves vs. maximum intensity over time for post-processing of dynamic contrast-enhanced ultrasound. European Journal of Radiology. 2010;75(1):149.
  4. Kiessling F, Krix M, Heilmann M, Vosseler S, Lichy M, Fink C, Farhan N, Kleinschmidt K, Schad L, Fusenig NE, and Delorme S. Comparing Dynamic Parameters of Tumor Vascularization in Nude Mice Revealed by Magnetic Resonance Imaging and Contrast-Enhanced Intermittent Power Doppler Sonography. Investigative Radiology. 2003;38(8):516‑24.
  5. Grouls C, Hatting M, Rix A, Pochon S, Lederle W, Tardy I, Kuhl CK, Trautwein C, Kiessling F, and Palmowski M. Liver Dysplasia: US Molecular Imaging with Targeted Contrast Agent Enables Early Assessment. Radiology. 2013;267(2):487‑95.
  6. Baetke SC, Rix A, Tranquart F, Schneider R, Lammers T, Kiessling F, and Lederle W. Squamous Cell Carcinoma Xenografts: Use of VEGFR2-targeted Microbubbles for Combined Functional and Molecular US to Monitor Antiangiogenic Therapy Effects. Radiology. 2016;278(2):430‑40.
  7. Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA, Hallscheidt P, Kauffmann GW, Semmler W, and Kiessling F. Vessel Fractions in Tumor Xenografts Depicted by Flow- or Contrast-Sensitive Three-Dimensional High-Frequency Doppler Ultrasound Respond Differently to Antiangiogenic Treatment. Cancer Research. 2008;68(17):7042‑9.
  8. Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W, and Kiessling F. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Molecular Cancer Therapeutics. 2008;7(1):101‑9.
  9. Curaj A, Wu Z, Fokong S, Liehn EA, Weber C, Burlacu A, Lammers T, van Zandvoort M, and Kiessling F. Noninvasive Molecular Ultrasound Monitoring of Vessel Healing After Intravascular Surgical Procedures in a Preclinical Setup. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(6):1366‑73.
  10. Kiessling F, Gaetjens J, and Palmowski M. Application of Molecular Ultrasound for Imaging Integrin Expression. Theranostics. 2011;1:127‑34.

Reviews / Perspectives

  1. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, and Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Advanced Drug Delivery Reviews. 2014;72:15‑27.
  2. Kiessling F, Fokong S, Koczera P, Lederle W, and Lammers T. Ultrasound Microbubbles for Molecular Diagnosis, Therapy, and Theranostics. Journal of Nuclear Medicine. 2012;53(3):345‑8.
  3. Paefgen V, Doleschel D, and Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Frontiers in Pharmacology. 2015;6.

Group members

Eva Fiegle

Eva (MD Student, RWTH Aachen University) is working on “Multimodal assessment of drug side effects and tumor response to chemo- and radiotherapy”.

Portrait of Eva Fiegle
E. Fiegle

Vera Päfgen

Vera (M.Sc. in Biology, RWTH Aachen University, 2013) works in collaboration with the groups of Prof. Bernhard Blümich (ITMC, RWTH Aachen University) and Prof. Louis Bouchard (University of California, Los Angeles) on hyperpolarized contrast agents for MRI to target tumor angiogenesis in vivo and increase signal intensity. She received a DAAD-funded scholarship (ACalNet), enabling her to work for some time at the UCLA. Additionally she develops and establishes an experimental in vitro setup for imaging the specific binding of targeted USPIO-microbubbles to endothelial cells under flow conditions in both MRI and MPI.

V. Päfgen

Anne Rix

Anne (B.Sc. in Molecular Biology, JGU Mainz) works as a lab technician and her main focus is functional and molecular ultrasound methods for assessing tumor angiogenesis and anti-angiogenic therapy effects. In addition, she is working on immunohistochemistry, microscopy and on different diagnostic and therapeutic in vivo and ex vivo experiments.

A. Rix

Benjamin Theek

Benjamin (M.Sc. in Biomedical Engineering, RWTH Aachen University, 2011) focuses on the design and evaluation of polymeric and liposomal nanomedicines for vascular normalization, in order to improve the efficacy of combined modality anticancer therapy. In addition, he develops methods for using ultrasound-based perfusion monitoring to reduce the interindividual variability in image-guided drug delivery and tumor targeting studies. Furthermore, he is involved in several different studies focusing on (theranostic) microbubbles, angiogenesis and liver fibrosis.

B. Theek

Milita Darguzyte

Milita (M.Sc. Biomedical Engineering, FH Aachen, 2017) is working on a project “Theranostic Riboflavin-Targeted Drug Delivery”. The project comprises synthetic work on the theranostic drug carriers, their in vitro and in vivo characterization as well as the evaluation of their therapeutic potential in tumor bearing mice.

M. Darguzyte

Nihan Güvener

Nihan (B.Sc. Chemical Engineer, MSc. Bioengineer) works on formulation of multifunctional contrast agents to bind to carriers for tissue engineering applications and develops 3D visibility in MRI and CT. She has received a Marie Curie fellowship via iTERM Project (Nano4Imaging GmbH, Aachen) in between 2013-2016.

N. Güvener

Jasmin Baier

Jasmin (M.Sc. in Biology, Goethe University Frankfurt, 2016) is working on the influence of molecular imaging on study results and animal welfare.

J. Baier

Gurbet Köse

Gurbet (M.Sc., University of Bristol) is part of the research training group “Tumor-Targeted Drug Delivery”. She works on the project “Sonoporation to improve drug delivery to breast cancer”. The project comprises work on microbubbles in combination with sonoporation to improve drug delivery system accumulation and efficacy.

K. Gurbet

Lisa Marie Bartmann

Lisa (MD Student) is working on Riboflavin-Uptake by endothelial, epithelial and tumor cells.

Elena Rama

Elena (M.Sc. in Pharmaceutical Chemistry and Technology, University of Urbino, Italy 2018) is a PhD student involved in a project focused on the development and monitoring of biohybrid tissue-engineered vascular grafts both in vitro and in animal models, via using several hybrid imaging techniques as PET-MRI.

E. Rama

Jinwei Qi

Jinwei Qi (Master of Imaging Medicine and Nuclear Medicine, Dalian Medical University, 2014) works on ultrasound-mediated gene delivery via lipoplex coupled to PBCA-based polymeric microbubbles.

J. Qi

Julia Quach (Bachelor Student)

Julia (University of Tübingen) is a Bachelor student and works on ultrasound-mediated gene delivery via lipoplex coupled to PBCA-based polymeric microbubbles.

Gerrit Verlande (Bachelor Student)

Gerrit (Bachelor student, RWTH Aachen University) is working on the changes in mice brains after exposure to imaging modalities, to assess the influence of non-invasive imaging on the scientific outcome.

G. Verlande